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The Bloch Sphere for Topologists

Ira S. Moskowitz

Center for High Assurance Computer Systems
Code 5540

Naval Research Laboratory
Washington, DC 20375

Abstract

We use this note to clear up some of the mysteries of the Bloch sphere
representation of pure states.

1. Introduction

The Bloch sphere is a representation of a pure state as a point on the unit sphere
S2 ⊂ R3. Pure state kets that are norm one scalar multiples of each other share
the same representation. We shall make this clear.

We make no claims of originality in this note. Our purpose is to simply
explain some of the basics of quantum information. For a general reference on
this subject we recommend [6]. For the discussion of the Hopf fibration and the
Bloch sphere we relied on [3, 8, 10, 11, 5].

We start with the two-dimensional Hilbert space C2 such that if v =
(
v1
v2

)
and w =

(
w1
w2

)
are elements of C2, then the inner product

v · w = v1 · w1 + v2 · w2 = v†w .

Note the horizontal line over a (complex) number represents its conjugate, and
also keep in mind that mathematicians often conjugate the second position,
rather than the first as quantum physicists do. Note that the dual vector v† is
the conjugate transpose of v and the multiplication between v† and w is matrix
multiplication. The norm (length, magnitude) of v is ||v|| =

√
v · v. Elements

of C2 are called states.
Next, we consider all the elements of C2 of length one. That set is simply

the 3-sphere S3 which is made up of elements of v ∈ C2 such that ||v|| = 1. We
call an element of S3 under this construction a pure state. The elements

(
1
0

)
and

(
0
1

)
in C2 form an orthonormal basis of C2. They are also elements of S3.

_______________
Manuscript approved September 24, 2008. 



They are so special we give them special names: |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
. Here

we have started using Dirac’s [2] bra-ket notation for states. A general state is
expressed as the ket |ψ〉 by

|ψ〉 = α |0〉+β |1〉

with α, β ∈ C. If we also have that |α|2 + |β|2 = 1, then our state is a pure state.
If a ket is a (complex) non-zero scalar multiple of another ket, those two kets
represent the same physical state. (This is why pure state kets should really be
viewed as elements of CP 1 as explained later.) At this stage we could directly
construct the Bloch sphere, but we choose to take a path that mimics what is
explained in [6, Sec. 1.2]. We may normalize any |ψ〉 by |ψ′〉 = 1√

|α|2+|β|2
|ψ〉.

Physically, |ψ〉 and |ψ′〉 are the same. Note that this brings us from the 4-
dimensional manifold C2, down a dimension, to the unit ball in 4-space, S3.
Pure state kets in S3 are unique up to a (complex) scalar multiple of norm
one. Using this thinking is how we will construct the Bloch sphere via the Hopf
fibration from S3 to S2 ∼= CP 1.

CP 1 is complex projective 1-space which is formed from C2 −
(

0
0

)
by iden-

tifying points in C2 −
(

0
0

)
that are the same up to a non-zero (complex) scalar

multiple. So
(
z1
z2

)
∼
(
w1
w2

)
iff z1 = c ·w1 and z2 = c ·w2 for c a non-zero complex

number. Hence we have the “mod” map E (sends an element to its equivalence
class)

E : C2 −
(

0
0

)
→ CP 1 .

Since CP 1 is given the quotient topology, E is continuous and onto. We discuss
this more later.

Since S3 is a subset of C2 −
(

0
0

)
, we can also view E as a continuous map

E : S3 → CP 1 .

However, we can do better than that by taking any point
(
z1
z2

)
∈ C2 −

(
0
0

)
and mapping it to the point 1√

|z1|2+|z2|2

(
z1
z2

)
∈ S3 via the map π to show that

E : S3 → CP 1 is also onto.

C2 −
(

0
0

)

S3 CP 1

?
π

HH
HHHHj

E

-
E

The above diagram commutes and the bottom horizontal map is simply, as
noted, the restriction of E to the subset S3 ⊂ C2 −

(
0
0

)
.
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In this paragraph we will show why we may view CP 1 as C∪∞, which is the
one point compactification of the complex numbers. We denote the equivalence
class of

(
z1
z2

)
as
[(

z1
z2

)]
. We may uniquely identify any

[(
z1
z2

)]
, except for

[(
z1
0

)]
with a point in C, by mapping

[(
z1
z2

)]
to z1/z2, and by mapping

[(
z1
0

)]
to ∞.

It is obvious that this mapping is well-defined. The mapping is onto because if
ζ ∈ C, then

[(
ζ
1

)]
maps to ζ. Given

(
z1
z2

)
we have that for any complex numbers

w1 and w2 that w1 = αz1 and that w2 = βz2, with α, β ∈ C− 0. The mapping
is 1-1 because, unless z2 = 0, if

[(
z1
z2

)]
=
[(

w1
w2

)]
then (α/β)(z1/z2) = w1/w2 =

z1/z2 so α = β. If z2 = 0 then if the equivalence classes are the same we must
have that w2 is also zero, so there is no restriction on α. This (famous) bijective
map from CP 1 → C∪∞, along with its inverse, is continuous (not shown) and
allows us to freely view CP 1 as C ∪ ∞. Note that

[(
z1
z2

)]
→ z1/z2 is not the

only “natural” homeomorphism that will work. In fact, we will actually use the
conjugate mapping

[(
z1
z2

)]
→ (z1/z2) in our construction of the Hopf fibration.1

In this paragraph we describe a “natural” homeomorphism between S2 and
CP 1 (taken as C ∪∞). View S2 in the usual manner as being centered about
the origin in R3, and view the subset (x, y, 0) in R3 as C. Draw a line from the
north pole (0, 0, 1) of S2 to a point ζ ∈ C. Where this line hits S2, other than
the north pole, is how we uniquely identify ζ with a point on S2. To extend
the homeomorphism to the point at infinity we identify ∞ with the north pole
itself.

We denote this above map by S

S : CP 1 → S2

Therefore, by composing S with E and calling it H (H = S ◦ E) we have

H : S3 → S2 .

This map is simply the famous Hopf (circle) fibration of S3 with base space S2,
first given in [3].

1The standard construction does not use the conjugate map. We use it so that our coordi-
nates on the Bloch sphere are the classical spherical coordinates. However, the Hopf fibration
“behaves” the same with either mapping.
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2. Maps in detail

Let us flesh out the details of our maps. Recall, we are freely viewing CP 1 as
C ∪∞ under the map that takes the equivalence class of

(
z1
z2

)
to the conjugate

of z1/z2. We will start with E .

2.1. E : S3 → CP 1

An element
(
z1
z2

)
of S3 is an element of C2−

(
0
0

)
with the restriction that |z1|2 +

|z2|2 = 1. The image of
(
z1
z2

)
in CP 1 under E is (z1/z2) and since 1/z2 = z2/|z2|2

and z = z, we have
E
((

z1
z2

))
= z1z2/|z2|2 .

The infinities work out in E because z1 and z2 are never simultaneously zero
and when dealing with infinities in complex variables a second order infinity
“beats” a first order zero.

If z1 = x1 + ix2 and z2 = x3 + ix4 then

E
((

x1+ix2
x3+ix4

))
=

(x1x3 + x2x4) + i(x1x4 − x2x3)
x3

2 + x4
2

.

2.2. S : CP 1 → S2

If ζ = a + ib is a point in C, with C being the plane (x, y, 0) ⊂ R3, then the
coordinates of ζ ∈ R3 are (a, b, 0). The coordinates of the north pole are (0, 0, 1).
The straight line from the north pole to ζ is then given by parametrized vector
in R3

−−→
V (t) = (1− t)(0, 0, 1) + t(a, b, 0)

We are interested in when this vector intersects S2. Therefore, we solve

|
−−→
V (t)|2 = 1 .

This gives us t2a2+t2b2+(1−t)2 = 1 which has the solutions t = 0 or t = 2/(1+
a2 + b2). We ignore the solution t = 0 because this is just the starting point-the
north pole. So the point on S3 that ζ maps to is 1

1+a2+b2 (2a, 2b, a2 + b2− 1). If
ζ is in fact ∞ then S maps it to the north pole (0, 0, 1).

2.3. H : S3 → S2

Let w = a + ib be the image of
(
x1+ix2
x3+ix4

)
under E, so a = x1x3+x2x4

x32+x42 and b =
x1x4−x2x3
x32+x42 . So a2 + b2 = x1

2+x2
2

x32+x42 , 1+a2 + b2 = 1+ x1
2+x2

2

x32+x42 = x1
2+x2

2+x3
2+x4

2

x32+x42 =
1

x32+x42 since
(
x1+ix2
x3+ix4

)
∈ S3. We also have that −1+a2 +b2 = x1

2+x2
2−x3

2−x4
2

x32+x42 .
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So S(w) =
(
2(x1x3 + x2x4), 2(x1x4 − x2x3), x1

2 + x2
2 − x3

2 − x4
2
)

. Combin-
ing everything gives us the Hopf map H : S3 → S2 as follows:

H
((

x1+ix2
x3+ix4

))
=
(
2(x1x3 + x2x4), 2(x1x4 − x2x3), x1

2 + x2
2 − x3

2 − x4
2
)
.

Using the complex coordinates of an element of S3 we can also write the Hopf
map as:

H
((

z1
z2

))
=
(

2Re(z1z2), 2Im(z1z2), |z1|2 − |z2|2
)
. (1)

If we view R3 as C× R we can also write the Hopf map as:

H
((

z1
z2

))
=
(

2z1z2, |z1|2 − |z2|2
)
. (2)

Let us show directly that the inverse image of H is made up of elements of
S3 that are the same up to scalar multiplication by a complex number of norm
one.

Say
(
w1
w2

)
= λ

(
z1
z2

)
, |λ| = 1. It is obvious that λz1 λz2 = z1z2 and that

|λ|2
(
|z1|2 + |z2|2

)
= |z1|2 + |z2|2 . Hence, H

(
λ
(
z1
z2

))
= H

((
z1
z2

))
.

We know that H is onto since E : S3 → CP 1 is. Say both
(
z1
z2

)
and

(
w1
w2

)
are in H−1(x0, y0, z0) where (x0, y0, z0) ∈ S2 ⊂ R3 ∼= C × R. We know that
|w1|2+|w2|2 = 1 = |z1|2+|z2|2. Therefore |w1|2 = 1−|w2|2 and |z1|2 = 1−|z2|2.
Since H maps both

(
z1
z2

)
and

(
w1
w2

)
to (x0, y0, z0), we have that 1 − 2|w2|2 =

z0 = 1− 2|z2|2, so w2 = λ2z2, |λ2| = 1. Similarly, w1 = λ1z1, |λ1| = 1. We also
have that 2w1w2 = x0 + iy0 = 2z1z2, which now gives us λ1λ2z1z2 = z1z2. If
z1 6= 0 6= z2, then λ1 = λ2/|λ2|2 = λ2, so λ1 = λ2 as desired. If z2 = 0 we
must also have that w2 = 0 since H maps them to the same point (0, 0, 1) ∈ R3.
Therefore, w1 = λz1 where |λ| must be one (of course 0 = λ0). The same thing
works if z1 = 0.

So we have shown that the Hopf map H : S3 → S2 is a map (in fact a smooth
map) such that the inverse image of every point is (diffeomorphic to) the unit
complex numbers (S1 or equally U(1)). An obvious question is then — Is S3

homeomorphic to S2 × S1? The answer in no because S3 is simply connected,
where as S2 × S1 is not. However, Hopf did show that a fiber bundle is formed
via his map H. This is why it is called the Hopf fibration We explicitly show
this below.

2.4. The Hopf fibration as a fiber bundle, h : S3 → CP 1

To make matters simple take S2 as CP 1 and view S3 as (z1, z2) ∈ C2 such that
|z1|2 + |z2|2 = 1. Instead of using the map H as before, we use the map h which
does not conjugate the ratio of the zi. The reason we use H as given before
was to be able to use the representation given in Eq. 2, which exactly gives
us spherical coordinates for the Bloch sphere. If we were to use the map h we
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would still get a good representation, it just would not be classical spherical
coordinates.

Let the open set U ⊂ CP 1 be all of CP 1 except for the point at infinity
(north pole of S2). Then h−1(U) is an open set in S3. We wish to show that
(1)-the following diagram commutes (where proj1 is projection onto the first
factor), and (2) the map f is a homeomorphism.

h−1(U) ⊂ S3 U × S1 ⊂ CP 1 × S1

U ⊂ CP 1

?

h

-f

���
���

���
proj1

If z1 = r1e
iφ1 and z2 = r2e

iφ2 , set f ((z1, z2)) = (z1/z2, eiφ2). This is well-
defined since z2 6= 0. The inverse map of f is f−1(ζ, eiθ) = 1√

1+|ζ|2
(eiθζ, eiθ). If

we write the zi as rieiφi and write |ζ|2 as r1
2

r22 and use the fact that r12 +r2
2 = 1

we see that f−1 is the inverse of f .
We now let V be the open subset of CP 1 that is everything except for the

origin (south pole). Then h−1(V ) is an open set in S3 we wish to show that
(1)-the following diagram commutes (where proj1 is projection onto the first
factor), and (2) the map f ′ is a homeomorphism.

h−1(V ) ⊂ S3 V × S1 ⊂ CP 1 × S1

V ⊂ CP 1

?

h

-f
′

�
���

�����
proj1

If z1 = r1e
iφ1 and z2 = r2e

iφ2 , set f ′ ((z1, z2)) = (z1/z2, eiφ1). This is well-
defined since z1 6= 0. The inverse map of f ′ is f ′−1(ζ, eiθ) = 1√

1+|ζ−1|2
(eiθ, eiθζ−1).

Thus, we have shown that we have a fiber bundle, since locally we can
show that S3 is homeomorphic to the cross-product CP 1 × S1 and the local
homeomorphisms respect the Hopf map.

3. Implicit Function Theorem

We end this note by pointing out that we could have quickly shown that the
inverse image in S3 of every point on S2 is a circle. The Hopf map from S3 to
S2 is a submersion. By the implicit function theorem H−1(s) is a 1-manifold.
Since s is closed H−1 must be a closed 1-manifold, which means that it is
homeomorphic to a circle. Of course this view does not prove that the Hopf
fibration is actually a fiber bundle but we could show that by viewing S1 as
the unitary group U(1) and letting U(1) act on S3 by scalar multiplication.
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S3/U(1) ∼= S2 with a resulting fiber bundle structure [9, Sec. 20]. In fact, the
fibration of S3 by circles is also a codimension-2 foliation of S3 [4, 7]. We chose
not to go this way in explaining the Bloch representation of pure state kets
(qubits) since the less machinery used the better.

3.1. Intuitiveness

We start off with the Hilbert space C2. Forgetting about the inner product stuff,
we see that this is just the 4-dimensional manifold R4. The scalar multiplication
in the Hilbert space allows us to multiply a ket by any complex scalar. A complex
scalar reiθ itself has two degrees of freedom, one is r and the other is θ. By
normalizing the ket we are loosing the degree of freedom from r, hence we drop
a dimension from four down to three—this is exactly what happens as we go
from C2 to S3. Now we are left with one degree of freedom θ. When we ignore
θ we loose another dimension and drop down to two; this is how we end up with
S2. It would be interesting to see if instead of looking at the circle action on S3

if we could look at it on C2 to begin with and then normalize by r.

4. Spherical Coordinates

Given any pure state ket |ψ〉 = α |0〉+β |1〉, we can express the Hopf map on |ψ〉
as H(|ψ〉) = H

((
α
β

))
= (2αβ, |α|2−|β|2) ∈ C×R ∼= R3, which is justified since

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
both as points in S3, which are also points in C2. If

α = rαe
iθα and β = rβe

iθβ , consider e−iθα |ψ〉 = |ψ′〉 = rα |0〉+rβei(θβ−θα) |1〉.
Since H(|ψ〉) = H(|ψ′〉), we need only analyze pure state kets of the form
rα |0〉+rβeiφ |1〉, φ ∈ [0, 2π). Since we are dealing with pure state kets we know
that (rα)2 +(rβ)2 = 1, By adjusting rα we see that rβ can be any value between
zero and one. Therefore, we can2 set rβ = sin(θ/2), for θ ∈ [0, π]. This forces
rα = cos(θ/2).

Hence (as in [6, Eq. (1.3)], which made no mention of the Hopf fibration)
we can express, for purposes of the Hopf map, any
|ψ〉 = eiγ

(
cos(θ/2) |0〉+eiφ sin(θ/2) |1〉

)
∈ S3 as

|ψ〉 = cos(θ/2) |0〉+eiφ sin(θ/2) |1〉 .

Viewing |ψ〉 ∈ S3, we write it as

|ψ〉 =
(

cos(θ/2)

eiφ sin(θ/2)

)
, (3)

Let us apply the Hopf map as given in Eq. (2):

H
((

cos(θ/2)

eiφ sin(θ/2)

))
=
(
2eiφ cos(θ/2) sin(θ/2), cos2(θ/2)− sin2(θ/2)

)
.

2The reason for the odd choice of θ/2, θ ∈ [0, π] instead of the simpler θ, θ ∈ [0, π/2] will
become clear later.
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However, by Eq. (1) this is(
2 cosφ cos(θ/2) sin(θ/2), 2 sin(φ) cos(θ/2) sin(θ/2), cos2(θ/2)− sin2(θ/2)

)
∈ R3.

(4)
This reduces to the spherical coordinates

(x, y, z) = (cosφ sin θ, sinφ sin θ, cos θ) , (5)

θ ∈ [0, π], φ ∈ [0, 2π), which up to a swap of φ and θ, are the classical spherical
coordinates.

5. Density Operators for Pure States

Given any pure state3 ket α |0〉+β |1〉 we can form the outer product |ψ〉 〈ψ|
which is (

α
β

)(
α
β

)†
=
(
|α|2 αβ
αβ |β|2

)
. (6)

Notice that if |λ| = 1, then |λψ〉 〈λψ| = |ψ〉 〈ψ|.
Using the representation of |ψ〉 as given in Eq. (3) and the identities

2 cos2(θ/2) − 1 = cos θ we see that |α|2 = cos2(θ/2) = 1
2 (1 + cos θ). Using Eq.

(5) then we see that |α|2 = 1
2 (1+z). Using the identity 1−2 sin2(θ/2) = cos(θ),

the representation Eq. (3) and Eq. (5) we similarly have that |β|2 = 1
2 (1− z).

In the same manner we have αβ = 1
2e
iφ sin θ = 1

2 (x+iy) and αβ = 1
2e
−iφ sin θ =

1
2 (x− iy). This allows us to express |ψ〉 〈ψ| also as

|ψ〉 〈ψ| = 1
2

(
1 + z x− iy
x+ iy 1− z

)
. (7)

Since the the density operator mapping |ψ〉 → |ψ〉 〈ψ| is invariant under multi-
plying |ψ〉 by a norm one scalar, if we restrict our kets to S3 we can take the
density operator mapping as an alternate Hopf map by using Eq. (6) to go back
to Eq. (5), and then back to Eq. (2). Of course, there is no a priori reason to,
in general, restrict the density operator mapping to S3 it is perfectly valid on
the Hilbert space C2.

It is worth pointing out that if one had no knowledge of the Hopf map and
only Eq. (6), and guessed that Eq. (6) was the same as Eq. (7) (that is
x + iy = 2αβ and z = |α|2 − |β|2), they would then have the Hopf map by
interpreting x, y, and z as points in R3 and seeing that x2 + y2 + z2 = 1.

The challenge now is to see how algebraic topology can help us with mixed
states.

3The kets need not be pure state to obtain the outer product matrix, but we require it
none the less.
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6. Pauli Matrices

By using the Pauli matrices [6], one can naturally [1] derive the spherical coor-
dinates from Eq. (7).

σ0 =
(

1 0
0 1

)
= I (8)

σx =
(

0 1
1 0

)
(9)

σy =
(

0 −i
i 0

)
(10)

σz =
(

1 0
0 −1

)
. (11)

We follow the definition for the Hopf map as given in [1]. For ψ =
(
α
β

)
∈ S3,

consider:
〈ψ|σx |ψ〉, 〈ψ|σy |ψ〉, and 〈ψ|σz |ψ〉 . (12)

We easily see that
σx |ψ〉 = σx

(
α
β

)
=
(
β
α

)
so, (13)

〈ψ|σx |ψ〉 = αβ + αβ (14)

σy |ψ〉 = σy

(
α
β

)
=
(
−iβ
iα

)
so, (15)

〈ψ|σy |ψ〉 = −iαβ + iαβ and (16)

σz |ψ〉 = σz

(
α
β

)
=
(
α
−β

)
so, (17)

〈ψ|σz |ψ〉 = |α|2 − |β|2 . (18)

But we have that 2Re(αβ) = αβ + αβ, and that 2Im(αβ) = −iαβ + iαβ.
Thus, we see that the Hopf map Eq. (2), with pure state |ψ〉 =

(
α
β

)
may be

rewritten as:
H (ψ) = (〈ψ|σx |ψ〉, 〈ψ|σy |ψ〉, 〈ψ|σz |ψ〉) . (19)

Consider an arbitrary 2 × 2 matrix M =
(
m1,1 m1,2

m2,1 m2,2

)
and pure state

outer product outer product density matrix |ψ〉 〈ψ| =
(
|α|2 αβ
αβ |β|2

)
. Trivial

calculations show that

〈ψ|M |ψ〉 = tr
M |ψ〉 〈ψ| . (20)

9



So, if ρ = |ψ〉 〈ψ|, we may write the Hopf map as

H (ψ) =
tr(σxρ), tr(σyρ), tr(σzρ)

 . (21)

The above Eq. (21) gives us hope of generalizing the Hopf map to mixed states
and seeing if that generalization corresponds to the known results on the Bloch
ball [6, Ex. 2.72].
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